Clean Agent Suppression of Energized Electrical Equipment Fires (2024)

Clean Agent Suppression of Energized Electrical Equipment Fires (1) https://doi.org/10.1007/s10694-009-0109-5

Journal: Fire Technology, 2009, №1, p.1-68

Publisher: Springer Science and Business Media LLC

Author: Gregory T. Linteris

List of references

  1. (2007) NFPA 2001 standard on clean agent fire extinguishing systems 2008 edition. NFPA, Quincy, MA
  2. McMenamin D (1997) Electrical fires and the power disconnect issue. In: 19th international telecommunications energy conference, INTELEC 97, IEEE, Earth, pp 454–461
  3. Robin ML (2004) Fire protection in telecommunication facilities. Process Safety Progress 19(2):107-111
    Clean Agent Suppression of Energized Electrical Equipment Fires (2) https://doi.org/10.1002/prs.680190211
  4. McKenna LA, Gottuk DT, DiNenno PJ (2006) Extinguishment tests of continuously energized class C fires. In: Gann RG, Whisner KC, Burgess SR, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1998. National Institute of Standards and Technology, Gaithersburg, MD, pp 80–90
  5. McKenna LA, Gottuk DT, DiNenno PJ, Mehta S (1998) Extinguishment tests of continuously energized Class C fires using HFC-227ea. Hughes Associates, Inc., Baltimore, MD
  6. Robin ML, Shaw B, Stilwell B (2007) Development of a standard procedure for the evaluation of the performance of clean agents in the suppression of Class C fires. In: NFPA suppression and detection (SUPDET), SUPDET-2007. National Fire Protection Association, Quincy, MA, pp 1–18
  7. Robin ML, Stilwell B, Shaw B (2008) Summary of ongoing Class C fire research for the purpose of identifying and evaluating Class C fire risks and suppression needs in modern data centers, internet service providers and telecommunications facilities. In: NFPA suppression and detection (SUPDET), SUPDET-2008. National Fire Protection Association, Quincy, MA, pp 1–12
  8. Driscoll MR, Rivers PE (1996) Clean extinguishing agents and continuously energized circuits. In: Annual conference on fire research: book of abstracts. National Institute of Standards and Technology, Gaithersburg, MD, pp 51–52
  9. Niemann R, Bayless H, Craft C (2006) Evaluation of selected NFPA 2001 agents for suppressing Class “C” energized fires. In: Gann RG, Whisner KC, Burgess SR, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1996. National Institute of Standards and Technology, Gaithersburg, MD, pp 399–412
  10. Steckler KD, Grosshandler WL, Smith WL, Rivers PE (1998) Clean agent performance on fires exposed to an external energy source. In: Beall KA (ed) Annual conference on fire research: book of abstracts, November 2–5, 1998. National Institute of Standards and Technology, Gaithersburg, MD, pp 127–128
  11. Donnelly MK, Grosshandler WL (2001) Suppression of fires exposed to an external radiant flux. NIST IR 6827, National Institute of Standards and Technology, Gaithersburg MD
    Clean Agent Suppression of Energized Electrical Equipment Fires (3) https://doi.org/10.6028/NIST.IR.6827
  12. Hamins A, Borthwick P (1998) Suppression of ignition over a heated metal surface. Combustion and Flame 112(1-2):161-170
    Clean Agent Suppression of Energized Electrical Equipment Fires (4) https://doi.org/10.1016/S0010-2180(97)81764-6
  13. Braun E, Womeldorf CA, Grosshandler WL (1999) Suppression concentration of clean agents exposed to a continuously energized heated metal surface. Fire Safety Journal 33(2):141-152
    Clean Agent Suppression of Energized Electrical Equipment Fires (5) https://doi.org/10.1016/S0379-7112(99)00011-9
  14. Smith DM, Niemann R, Bengtson G (2006) Examination and comparison of existing halon alternatives and new sustainable clean agent technology in suppressing continuously energized fires. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2001. National Institute of Standards and Technology, Gaithersburg, MD, pp 288–298
  15. Bengtson G, Flamm J, Niemann R (2006) Update on the examination and comparison of existing halon alternatives and new sustainable clean agent technology in suppressing continuously energized fires. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2002. National Institute of Standards and Technology, Gaithersburg, MD, pp 1–3
  16. Linteris GT (2009) Clean agent suppression of energized electrical equipment fires. NISTTN 1622, National Institute of Standards and Technology, Gaithersburg, MD
  17. Tewarson A, Pion RF (1976) Flammability of Plastics .1. Burning Intensity. Combustion and Flame 26(1):85-103
    Clean Agent Suppression of Energized Electrical Equipment Fires (6) https://doi.org/10.1016/0010-2180(76)90059-6
  18. Tewarson A (1995) Generation of heat and chemical compounds in fires. In: Beyler CL, Custer RLP, Walton WD, Watts JMJr, Drysdale D, Hall JRJr, Dinenno PJ (eds) SFPE handbook of fire protection engineering. National Fire Protection Association, Quincy, MA, pp 3–53
  19. Rhodes BT, Quintiere JG (1996) Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal 26(3):221-240
    Clean Agent Suppression of Energized Electrical Equipment Fires (7) https://doi.org/10.1016/S0379-7112(96)00025-2
  20. Linteris G (2008) Numerical simulations of polymer burning rate and the inferred effective heat of gasification. Fire Mater (in preparation)
  21. Quintiere JG (1998) Principles of Fire Behavior. Delmar, Albany, NY
  22. Williams FA (1974) A unified view of fire suppression. Journal of Fire and Flammability 5:54-63
  23. Linan A (1974) The Asymptotic Structure of Counterflow Diffusion Flames for Large Activation Energy. Acta Astronautica 1(7/8):1007-1039
    Clean Agent Suppression of Energized Electrical Equipment Fires (8) https://doi.org/10.1016/0094-5765(74)90066-6
  24. Hamins A, Gmurczyk G, Grosshandler WL, Presser C, Seshadri K (1994) Flame suppression effectiveness. In: Grosshandler WL, Gann RG, Pitts WM (eds) Evaluation of alternative in-flight fire suppressants for full-scale testing in simulated aircraft engine nacelles and dry bays. National Institute of Standards and Technology, Gaithersburg, MD, pp 345–465
  25. Zebetakis MG (1965) Flammability characteristics of combustible gases and vapors. Bulletin 627, U.S. Dept of the Interior, Bureau of Mines, Washington
  26. Takahashi F, Linteris GT, Katta VR (2006) Extinguishment mechanisms of co-flow diffusion flames in a cup-burner apparatus. Proc Combust Inst 31(Part 2):2721-2729
  27. Takahashi F, Linteris GT, Katta VR (2008) Extinguishment mechanisms of microgravity diffusion flames in air and oxygen-enriched streams with dilution. Combus Flame (in preparation)
    Clean Agent Suppression of Energized Electrical Equipment Fires (9) https://doi.org/10.1016/j.combustflame.2008.03.005
  28. Takahashi F, Linteris GT, Katta VR (2006) Vortex-coupled oscillations of edge diffusion flames in coflowing air with dilution. Proc Combust Inst 31(Part 1):1575-1582
  29. Linteris GT, Gmurczyk GW (1995) Prediction of HF formation during suppression. In: R.G.Gann (ed) Fire suppression system performance of alternative agents in aircraft engine and dry bay laboratory simulations. National Institute of Standards and Technology, Gaithersburg, MD, pp 201–318
  30. Linteris GT, Truett L (1996) Inhibition of premixed methane-air flames by fluoromethanes. Combust Flame 105(1-2):15-27
    Clean Agent Suppression of Energized Electrical Equipment Fires (10) https://doi.org/10.1016/0010-2180(95)00152-2
  31. Linteris GT, Burgess DR, Babushok V, Zachariah M, Tsang W, Westmoreland P (1998) Inhibition of premixed methane-air flames by fluoroethanes and fluoropropanes. Combust Flame 113(1-2):164-180
    Clean Agent Suppression of Energized Electrical Equipment Fires (11) https://doi.org/10.1016/S0010-2180(97)00216-2
  32. Zallen DM, Morehouse ET Jr (2008) Fire extinguishing agents for oxygen-enriched environments. In: Schroll DW (ed) Third international symposium on flammability and sensitivity of materials in oxygen-enriched atmospheres, flammability and sensitivity of materials in oxygen-enriched atmospheres: third volume. American Society for Testing and Materials, Philadelphia, PA, pp 391–412
  33. Katta VR, Takahashi F, Linteris GT (2006) Fire-suppression characteristics of CF3H in a cup burner. Combust Flame 144(4):645-661
    Clean Agent Suppression of Energized Electrical Equipment Fires (12) https://doi.org/10.1016/j.combustflame.2005.09.006
  34. Takahashi F, Linteris GT, Katta VR (2006) Extinguishment mechanisms of cup-burner flames. In: AIAA paper 2008-0745, 44th aerospace sciences meeting and exhibit, AIAA, Reston, VA
    Clean Agent Suppression of Energized Electrical Equipment Fires (13) https://doi.org/10.2514/6.2006-745
  35. Fenimore CP, Martin FJ (1966) Flammability of polymers. Combustion and Flame 10(2):135-139
    Clean Agent Suppression of Energized Electrical Equipment Fires (14) https://doi.org/10.1016/0010-2180(66)90059-9
  36. Fenimore CP, Jones GW (1966) Modes of inhibiting polymer flammability. Combustion and Flame 10(3):295-301
    Clean Agent Suppression of Energized Electrical Equipment Fires (15) https://doi.org/10.1016/0010-2180(66)90087-3
  37. Fenimore CP, Martin FJ (1966) Candle-type test for flammability of polymers. Modern Plastics 12:141-192
  38. Bajpai SN (1974) An Investigation of the Extinction of Diffusion Flames by halons. Journal of Fire and Flammability 5:255-267
  39. Hirst B, Booth K (1977) Measurement of flame extinguishing concentrations. Fire Technology 13(4):296-315
    Clean Agent Suppression of Energized Electrical Equipment Fires (16) https://doi.org/10.1007/BF02319727
  40. Katta VR, Takahashi F, Linteris GT (2003) Numerical investigations of CO2 as fire suppressing agent. In: Evans DD (ed) Int. assoc. for fire safety science, Boston, MA, pp 531–542
    Clean Agent Suppression of Energized Electrical Equipment Fires (17) https://doi.org/10.3801/IAFSS.FSS.7-531
  41. Linteris GT, Chelliah HK (2001) Powder-matrix systems for safer handling and storage of suppression agents. NISTIR 6766, National Institute of Standards and Technology, Gaithersburg, MD
  42. Linteris GT (2001) Suppression of cup-burner diffusion flames by super-effective chemical inhibitors and inert compounds. In: Gann RG, Whisner KC, Burgess SR, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2001. National Institute of Standards and Technology, Gaithersburg, MD, pp 187–196
  43. Linteris GT, Takahashi F, Katta VR (2007) Cup-burner flame extinguishment by CF3Br and Br2. Combust Flame 149(1/2):91-103
    Clean Agent Suppression of Energized Electrical Equipment Fires (18) https://doi.org/10.1016/j.combustflame.2006.12.013
  44. Takahashi F, Katta V (2007) Stabilization and suppression of axisymmetric diffusion flames. In: 45th AIAA aerospace sciences meeting and exhibit. AIAA paper: AIAA 2007-738, AIAA, New York
    Clean Agent Suppression of Energized Electrical Equipment Fires (19) https://doi.org/10.2514/6.2007-738
  45. Goldmeer JS, T’Ien JS, Urban DL (1999) Combustion and extinction of PMMA cylinders during depressurization in low-gravity. Fire Safety Journal 32(1):61-88
    Clean Agent Suppression of Energized Electrical Equipment Fires (20) https://doi.org/10.1016/S0379-7112(98)00017-4
  46. Ruff GA, Hicks M, Mell WE, Pettegrew R, Malcom A (2003) CO2 suppression of PMMA flames in low-gravity. In: 7th international workshop on microgravity combustion and chemically reacting systems, NASA/CP-2003-212376/REV1, NASA, Cleveland, OH, pp 301–304
  47. Ohlemiller TJ, Shields JR, Butler KM, Collins B, Seck M (2000) Exploring the role of polymer melt viscosity in melt flow and flammability behavior. In: New developments and key market trends in flame retardancy, proceedings of the fall conference of the fire retardant chemicals association. Fire Retardant Chemicals Association, Lancaster, PA, pp 1–28
  48. Montegi T, Shibuya T, Tsuruda T, Saito N (2003) A study on fire suppression phenomena of gaseous extinguishing agents for flammable solids. In: Report of National Research Institute of Fire and Disaster, No. 96, Japan, pp 52–57
  49. Panagiotou J, Quintiere JG (2004) Generalizing flammability of materials. In: Fire science and engineering conference; Interflam 2004, IInterflam—proceedings; 10th 2004; 2004; conf 10, vol 2. Interscience Communications, London, pp 985–906
  50. Keski-Rahkonen O, Mangs J (2002) Electrical ignition sources in nuclear power plants: statistical, modelling and experimental studies. Nuclear Engineering and Design 213(2-3):209-221
    Clean Agent Suppression of Energized Electrical Equipment Fires (21) https://doi.org/10.1016/S0029-5493(01)00510-6
  51. Flamm J, Bengtson G, Niemann R (2006) Continuing the examination and comparison of existing halon alternatives in preventing re-ignition on continuously energized fires. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2005. National Institute of Standards and Technology, Gaithersburg, MD, pp 1–7
  52. Tewarson A, Khan MM (1993) Extinguishment of diffusion flames of polymeric materials by Halon 1301. Journal of Fire Sciences 11(5):407-420
    Clean Agent Suppression of Energized Electrical Equipment Fires (22) https://doi.org/10.1177/073490419301100503
  53. Tewarson A, Khan MM (2006) Extinguishment of diffusion flames of polymeric materials by Halon 1301. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1992. National Institute of Standards and Technology, Gaithersburg, MD, pp 137–150
  54. Niemann R, Bayless H (2006) Update on the evaluation of selected NFPA 2001 agents for suppressing Class “C” energized fires. In: Gann RG, Whisner KC, Burgess SR, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1998. National Institute of Standards and Technology, Gaithersburg, MD, pp 293–295
  55. Bengtson G, Flamm J, Niemann R (2006) Update on the evaluation of selected NFPA 2001, agents for suppressing class “C” energized fires featuring C6 F-ketone. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2002. National Institute of Standards and Technology, Gaithersburg, MD, pp 1–3
  56. Bengtson G, Niemann R (2006) Update in the evaluation of selected NFPA 2001 agents for suppressing class “C” energized fires. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2005. National Institute of Standards and Technology, Gaithersburg, MD, pp 1–4
  57. Driscoll MR, Rivers PE (2006) Clean extinguishing agents and continuously energized circuits: recent findings. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1997. National Institute of Standards and Technology, Gaithersburg, MD, pp 129–141
  58. Smith DM, Rivers PE (2006) Effectiveness of clean agents on burning polymeric materials subjected to an external energy source. In: Gann RG, Burgess SR, Whisner KC, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-1999. National Institute of Standards and Technology, Gaithersburg, MD, pp 522–533
  59. Smith S, Gallus T, Tapia S, Ball E, Beeson H (2006) Electrical arc ignition testing of spacesuit materials. Journal of ASTM International (JAI) 3(8):229-246
  60. Khan MM (1992) The effectiveness of Halon 1301 in suppressing cable fires ignited by a sustained electrical arc. FMRC J.I. OT1E4.RC, Factory Mutual Research Corp., Norwood, MA
  61. Kurosaki Y, Ito A, Chiba M (1979) Downward flame spread along two vertical, parallel sheets of thin combustible solid. Proc Combust Inst 17:1211–1220
    Clean Agent Suppression of Energized Electrical Equipment Fires (23) https://doi.org/10.1016/S0082-0784(79)80115-0
  62. Siegel R, Howell JR (1981) Thermal radiation heat transfer. Hemisphere Pub. Corp., Washington
  63. Welty JR, Wicks CE, Wilson RE (1976) Fundamentals of Momentum, Heat and Mass Transfer. John Wiley & Sons, New York
  64. Marks LS (1978) Marks’ standard handbook for mechanical engineers. McGraw-Hill, New York
  65. Stoliarov SI, Walters RN (2008) Determination of the heats of gasification of polymers using differential scanning calorimetry. Polymer Degradation and Stability 93(2):422-427
    Clean Agent Suppression of Energized Electrical Equipment Fires (24) https://doi.org/10.1016/j.polymdegradstab.2007.11.022
  66. Xin Y, Khan MM (2007) Flammability of combustible materials in reduced oxygen environment. Fire Safety Journal 42(8):536-547
    Clean Agent Suppression of Energized Electrical Equipment Fires (25) https://doi.org/10.1016/j.firesaf.2007.04.003
  67. Twilley WH, Babrauskas V (1988) User’s guide for the cone calorimeter. SP-745, National Institute of Standards and Technology, Gaithersburg, MD
  68. Babrauskas V (2001) How do electrical wiring faults lead to structure ignitions? In: Fire and materials 2001, 7th international conference and exhibition, proceedings of fire and materials 2001 conference. Interscience Communications Ltd., London, pp 39–51
  69. Linteris GT, Rafferty IP (2008) Flame size, heat release, and smoke points in materials flammability. Fire Safety Journal 43:442-450
    Clean Agent Suppression of Energized Electrical Equipment Fires (26) https://doi.org/10.1016/j.firesaf.2007.11.006
  70. Linteris GT, Gewuerz L, McGrattan KB, Forney GP (2004) Modeling Solid Sample Burning with FDS. NISTIR 7178, National Institute of Standards and Technology, Gaithersburg MD
    Clean Agent Suppression of Energized Electrical Equipment Fires (27) https://doi.org/10.6028/NIST.IR.7178
  71. Roman J, Kluge R (2003) Key NEBS system design and test considerations to minimize TTM and costs. In: Intel developer forum, Springer 2003, San Francisco
  72. Robin ML, Rowland TF, Cisneros MD (2006) Fire suppression testing: extinguishment of Class A fires with clean agents. In: Gann RG, Whisner KC, Burgess SR, Reneke PA (eds) Papers from 1991 to 2006 halon options technical working conferences (HOTWC), CD-ROM, NIST SP 984-4, HOTWC-2001. National Institute of Standards and Technology, Gaithersburg, MD, pp 265–271
  73. Babushok VI, Tsang W (2000) Inhibitor rankings for hydrocarbon combustion. Combust Flame 123(4):488-506
    Clean Agent Suppression of Energized Electrical Equipment Fires (28) https://doi.org/10.1016/S0010-2180(00)00168-1
  74. Linteris GT, Gewuerz L, McGrattan KB, Forney GP (2005) Modeling solid sample burning. In: Gottuk DT, Lattimer BY (eds) Fire safety science––proceedings of the eight international symposium. International Association for Fire Safety Science, Boston, MA, pp 625–636
    Clean Agent Suppression of Energized Electrical Equipment Fires (29) https://doi.org/10.3801/IAFSS.FSS.8-625
  75. Holman JP (1981) Heat Transfer. McGraw-Hill, New York
  76. Mulholland GW, Janssens M, Yusa S, Twilley W, Babrauskas V (1991) The effect of oxygen concentration on CO and smoke produced by flames. In: Cox G, Langford B (eds) Fire Safety science–proceedings of the third international symposium. Elsevier Applied Science, London, pp 585–594
    Clean Agent Suppression of Energized Electrical Equipment Fires (30) https://doi.org/10.3801/IAFSS.FSS.3-585

Publications that cite this publication

Clean Agent Total Flooding Fire Extinguishing Systems

Philip J. DiNenno, Eric W. Forssell

Clean Agent Suppression of Energized Electrical Equipment Fires (31) https://doi.org/10.1007/978-1-4939-2565-0_44

2016, SFPE Handbook of Fire Protection Engineering, p.1483-1530

Scopus

Crossref citations:1

Fundamental Suppression Chemistry of Clean Fire Suppressing Agents: A Review

Xiaomin Ni, W. K. Chow

Clean Agent Suppression of Energized Electrical Equipment Fires (32) https://doi.org/10.2190/af.21.3.e

2011, Journal of Applied Fire Science, №3, p.223-251

Scopus

Crossref citations:2

Unwanted combustion enhancement by C6F12O fire suppressant

Gregory T. Linteris, Valeri I. Babushok, Peter B. Sunderland, Fumi Takahashi, Viswanath R. Katta, Oliver Meier

Clean Agent Suppression of Energized Electrical Equipment Fires (33) https://doi.org/10.1016/j.proci.2012.06.050

2013, Proceedings of the Combustion Institute, №2, p.2683-2690

Scopus

WoS

Crossref citations:67

The Efficiency of Perfluorohexanone on Suppressing Lithium-Ion Battery Fire and Its Device Development

Chuang Liang, Kaiqiang Jin, Pengjie Liu, Chengdong Wang, Jiajia Xu, Huang Li, Qingsong Wang

Clean Agent Suppression of Energized Electrical Equipment Fires (34) https://doi.org/10.1007/s10694-023-01365-z

2023, Fire Technology, №3, p.1283-1301

Scopus

WoS

Crossref citations:0

Experimental and Numerical Study of the Interaction Between Water Mist and Fire in an Intermediate Test Tunnel

E. Blanchard, P. Boulet, P. Fromy, S. Desanghere, P. Carlotti, J. P. Vantelon, J. P. Garo

Clean Agent Suppression of Energized Electrical Equipment Fires (35) https://doi.org/10.1007/s10694-013-0323-z

2013, Fire Technology, №3, p.565-587

Scopus

WoS

Crossref citations:21

Ignition and Flame Propagation of Externally Heated Electrical Wires with Electric Currents

Xiaowei Wang, Hao He, Luyao Zhao, Jun Fang, Jinjun Wang, Yongming Zhang

Clean Agent Suppression of Energized Electrical Equipment Fires (36) https://doi.org/10.1007/s10694-015-0515-9

2015, Fire Technology, №2, p.533-546

Scopus

WoS

Crossref citations:25

The Influence of Currents on the Ignition and Correlative Smoke Productions for PVC-Insulated Electrical Wires

Hao He, Qixing Zhang, Xiaowei Wang, Feng Wang, Luyao Zhao, Yongming Zhang

Clean Agent Suppression of Energized Electrical Equipment Fires (37) https://doi.org/10.1007/s10694-016-0634-y

2016, Fire Technology, №3, p.1275-1289

Scopus

WoS

Crossref citations:10

Understanding overpressure in the FAA aerosol can test by C3H2F3Br (2-BTP)

Gregory Thomas Linteris, Valeri Ivan Babushok, John Leonard Pagliaro, Donald Raymond Burgess, Jr., Jeffrey Alan Manion, Fumiaki Takahashi, Viswanath Reddy Katta, Patrick Thomas Baker

Clean Agent Suppression of Energized Electrical Equipment Fires (38) https://doi.org/10.1016/j.combustflame.2015.10.022 · Clean Agent Suppression of Energized Electrical Equipment Fires (39) Full text

2016, Combustion and Flame, p.452-462

Scopus

WoS

Crossref citations:16

Analysis of effectiveness of suppression of lithium ion battery fires with a clean agent

Ahmed O. Said, Stanislav I. Stoliarov

Clean Agent Suppression of Energized Electrical Equipment Fires (40) https://doi.org/10.1016/j.firesaf.2021.103296 · Clean Agent Suppression of Energized Electrical Equipment Fires (41)

2021, Fire Safety Journal, p.103296

Scopus

WoS

Crossref citations:19

Application of Clean Agents in Fire Suppression Systems: An Overview

Abdul Shukor Jum’azulhisham, Abdul Razak Muhammad Al-Hapis, Hassan Azmi, Jamian Rahim

Clean Agent Suppression of Energized Electrical Equipment Fires (42) https://doi.org/10.1007/978-3-030-67750-3_27

2021, Advanced Structured Materials Progress in Engineering Technology III, p.315-330

Scopus

Crossref citations:0

Find all citations of the publication

About this publication

Number of citations 7
Number of works in the list of references 76
Journal indexed in Scopus Yes
Journal indexed in Web of Science Yes
Clean Agent Suppression of Energized Electrical Equipment Fires (2024)

References

Top Articles
Üzlet befogadóképessége (fő) Az üzlet napi / heti nyitva tartási ideje Üzlet elnevezése Üzlet alapterülete (nm) - PDF Ingyenes letöltés
Otb Belmont Results
The Largest Banks - ​​How to Transfer Money With Only Card Number and CVV (2024)
Devon Lannigan Obituary
Vanadium Conan Exiles
Directions To Lubbock
Sinai Web Scheduler
Kagtwt
Matthew Rotuno Johnson
World of White Sturgeon Caviar: Origins, Taste & Culinary Uses
Herbalism Guide Tbc
What Is A Good Estimate For 380 Of 60
House Party 2023 Showtimes Near Marcus North Shore Cinema
Missing 2023 Showtimes Near Landmark Cinemas Peoria
Connect U Of M Dearborn
Bend Pets Craigslist
R Personalfinance
Energy Healing Conference Utah
Long Island Jobs Craigslist
Ezel Detailing
Village
Talk To Me Showtimes Near Marcus Valley Grand Cinema
Culver's.comsummerofsmiles
Dr Seuss Star Bellied Sneetches Pdf
Catchvideo Chrome Extension
Marilyn Seipt Obituary
Cowboy Pozisyon
Aes Salt Lake City Showdown
Busch Gardens Wait Times
N.J. Hogenkamp Sons Funeral Home | Saint Henry, Ohio
Despacito Justin Bieber Lyrics
Ippa 番号
Pitchfork's Top 200 of the 2010s: 50-1 (clips)
ATM Near Me | Find The Nearest ATM Location | ATM Locator NL
Scanning the Airwaves
Streameast.xy2
Los Garroberros Menu
Pepsi Collaboration
Wlds Obits
Paperless Employee/Kiewit Pay Statements
Gun Mayhem Watchdocumentaries
sacramento for sale by owner "boats" - craigslist
Gfs Ordering Online
Ezpawn Online Payment
Nail Salon Open On Monday Near Me
Lamp Repair Kansas City Mo
Honkai Star Rail Aha Stuffed Toy
Bmp 202 Blue Round Pill
Chubbs Canton Il
Motorcycles for Sale on Craigslist: The Ultimate Guide - First Republic Craigslist
Grandma's Portuguese Sweet Bread Recipe Made from Scratch
Kobe Express Bayside Lakes Photos
Latest Posts
Article information

Author: Moshe Kshlerin

Last Updated:

Views: 6296

Rating: 4.7 / 5 (77 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Moshe Kshlerin

Birthday: 1994-01-25

Address: Suite 609 315 Lupita Unions, Ronnieburgh, MI 62697

Phone: +2424755286529

Job: District Education Designer

Hobby: Yoga, Gunsmithing, Singing, 3D printing, Nordic skating, Soapmaking, Juggling

Introduction: My name is Moshe Kshlerin, I am a gleaming, attractive, outstanding, pleasant, delightful, outstanding, famous person who loves writing and wants to share my knowledge and understanding with you.